
Package: massSpectrometryR (via r-universe)
October 26, 2024

Type Package

Imports R6, stringr, magrittr, tibble, dplyr, rcdk, purrr, enviPat

Title massSpectrometryR

Version 0.3.0

Author Ben Bruyneel <benbruyneel@gmail.com>

Maintainer Ben Bruyneel <benbruyneel@gmail.com>

Description Provides calculations, plotting etc for chemistry & mass
spectrometry.

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/BenBruyneel/massSpectrometryR

LazyData true

RoxygenNote 7.2.3

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 2.10)

Repository https://benbruyneel.r-universe.dev

RemoteUrl https://github.com/BenBruyneel/massSpectrometryR

RemoteRef HEAD

RemoteSha 066d41a966bb54213fa155e8149a10491326958c

Contents
addFormulas . 2
addListFormulas . 3
aminoAcidClass . 4
aminoAcidModifications . 5
aminoAcidResidues . 6

1

https://github.com/BenBruyneel/massSpectrometryR

2 addFormulas

chemicals . 7
digest . 9
electronFormula . 9
elements . 10
elementsAverage . 12
elementsInFormula . 12
elementsInFormulas . 13
elementsMonoisotopic . 13
emptyFormula . 14
formulaString . 15
formulaToMass . 15
massToMz . 16
massToMzH . 18
modifications . 19
mzHToMass . 21
mzToMass . 22
pdToFormula . 23
peptide . 23
peptideCount . 32
peptideFormula . 33
peptideFragments . 34
peptideMzH . 34
protonFormula . 35
rcdkFormula . 35
removeZeros . 36
sortFormula . 37
stringFormula . 37
stringToFormula . 38
subtractFormulas . 39
validFormula . 39
waterFormula . 40
%f-% . 40
%f+% . 41

Index 42

addFormulas Adding up two formulas, taking into account possible differing ele-
ments

Description

Adding up two formulas, taking into account possible differing elements

Usage

addFormulas(formula1, formula2)

addListFormulas 3

Arguments

formula1 named numeric vector, example c(O = 2, C = 1)

formula2 named numeric vector, example c(H = 2, S = 1)

Value

a named numeric vector (formula)

Examples

addFormulas(waterFormula(), protonFormula())
addFormulas(waterFormula(), c(C=1, O=2))

addListFormulas Add up a list of formulas

Description

Take a list of formulas and adds them all up

Usage

addListFormulas(formulas)

Arguments

formulas list of formulas

Value

a named numeric vector (formula)

Examples

addListFormulas(list(c(H = 2, O = 1),
c(H = 1),
c(H = 2, O = 1),
c(S = 1, O = 2)))

4 aminoAcidClass

aminoAcidClass R6 Class representing a set of amino acids

Description

R6 Class representing a set of amino acids. It adds three functions to quickly switch between
different writing ’styles’ of peptides

Details

Note: this class is meant to be used only for amino acids and such

Super class

massSpectrometryR::chemicals -> aminoacids

Methods

Public methods:
• aminoAcidClass$getName()

• aminoAcidClass$getShort()

• aminoAcidClass$translatePeptide()

• aminoAcidClass$clone()

Method getName(): Function to retrieve the full name of an amino acid via the letter or shorts

Usage:
aminoAcidClass$getName(searchString, checkCase = TRUE)

Arguments:

searchString either a 1- or 3- letter character vector
checkCase default = TRUE. If false, the function will ignore the case the searchString argument

Returns: character vector, name of the aminoacid

Method getShort(): Function to retrieve either the 1- or 3- letter code of an amino acid

Usage:
aminoAcidClass$getShort(searchString, checkCase = TRUE)

Arguments:

searchString either a 1- or 3- letter character vector: if 1-letter than the corresponding 3-letter
character vector will be returned and vice versa

checkCase default = TRUE. If false, the function will ignore the case the searchString argument

Returns: character vector, 1- or 3- letter code of the aminoacid

Method translatePeptide(): Translates a amino acid sequence from 1-letter codes to 3-letter
codes and vice versa

aminoAcidModifications 5

Usage:
aminoAcidClass$translatePeptide(
sequence,
from1to3 = FALSE,
splitCharacter = NA,
joinCharacter = NA,
checkCase = TRUE

)

Arguments:

sequence character vector: amino acid sequence in 1-letter or 3-letter codes
from1to3 logical vector: if TRUE, then translation will be from 1-letter code to 3=letter code.

If FALSE, then vice versa. Default = FALSE
splitCharacter character vector specifying the character(s) between the 1- or 3-letter codes

in the sequence. Default NA (same as "")
joinCharacter character vector specifying the character(s) between the translated codes. De-

fault NA (same as "")
checkCase default = TRUE. If false, the function will ignore the case the sequence

Returns: character vector, sequence in either 1- or 3-letter codes

Method clone(): The objects of this class are cloneable with this method.

Usage:
aminoAcidClass$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

aminoAcidResidues()$getShort("L")
aminoAcidResidues()$getShort("Leu")
aminoAcidResidues()$getName("L")
aminoAcidResidues()$getName("Leu")
aminoAcidResidues()$translatePeptide("Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu",
from1to3 = TRUE, splitCharacter ="-")

aminoAcidResidues()$translatePeptide("DRVYIHPFHL", joinCharacter = "-")

aminoAcidModifications

Returns a pre-defined object which contains info on some common
amino acid modifications

Description

Returns a pre-defined object which contains info on some common amino acid modifications

6 aminoAcidResidues

Usage

aminoAcidModifications()

Value

An object of class modifications containing info on amino acid modifications

Note

the resulting modification table cannot be used immediately: there is two times a fixed modification
for Cysteine amino acids. Remove one of them to prevent errors when using peptide calculations

Examples

print(aminoAcidModifications)

aminoAcidResidues Generates a pre-defined object which contains info on ’normal’ amino
acid residues

Description

Generates a pre-defined object which contains info on ’normal’ amino acid residues

Usage

aminoAcidResidues()

Value

a R6 object of class ’chemicals’

Note

The formulas in the object are amino acid residues as they are present in proteins. To get the actual
formula of the amino acid in its ’free’ form, add c(H=2, O=1) (water)

this object is used in all protein calculations in this package

Examples

print(aminoAcidResidues())

chemicals 7

chemicals R6 Class representing a set of chemicals

Description

Every chemical inside the object has a name, letter, short and a formula. The first 3 can be any
length of string (though the letter and short field should be maximum length (nchar) 1 and 2-4
respectively). Formula should be in the form of a named numeric with the names representing
elements and the values themselves being the number of atoms of that element, eg c(C = 3, H = 5,
N = 1, O = 1, S = 0)

Details

Note: this class is meant to be used for classes of compounds, eg amino acids

Also: his class is meant as a base class to be expanded via inheritance

Warning: all chemicals inside this object should be unique (names, letters & shorts)

Active bindings

number retrieve the number of compounds present in the object, read only

letters to access the letters of the compounds in the object

names to access the names of the compounds in the object

shorts to access the shorts of the compounds in the object

formulas to access the formulas of the compounds in the object

table retrieves all info on the compounds in data.frame format, read only

Methods

Public methods:

• chemicals$new()

• chemicals$print()

• chemicals$getFormula()

• chemicals$clone()

Method new(): Create a new chemicals object

Usage:
chemicals$new(letters, shorts, names, formulas)

Arguments:

letters character vector specifying the letters (or numbers or whatever) for the chemicals. In
case of amino acids it should be eg "A" for Alanine, "G" for Glycine, etc etc

shorts character vector specifying the short names for the chemicals, eg Ala for Alanine
names character vector specifying the names of the chemicals

8 chemicals

formulas list of named numeric vectors specifying the formulas of the chemicals, eg c(C = 6,
H = 12, N = 4, O = 1, S = 0) for Arginine

Returns: a new ’chemical’ object

Method print(): For printing purposes: prints a table of the chemicals with columns letter,
name & short

Usage:

chemicals$print(...)

Arguments:

... no arguments, the function takes care of printing

Method getFormula(): Retrieves the formula of one of the compounds in the object

Usage:

chemicals$getFormula(which1)

Arguments:

which1 specifies which chemical should be retrieved. Which the number (row number in the
chemicals table), or the name, letter or short as a character vector. The way this is set up, it
doesn’t matter whether capital or non-capital letters are used, since all is converted to upper
case before comparing with what’s in the chemical table

Returns: a formula in the shape of a named numeric vector, eg c(C = 6, H = 12, N = 4, O = 1,
S = 0)

Method clone(): The objects of this class are cloneable with this method.

Usage:

chemicals$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

estrogens <- chemicals$new(letters = c("1","2","3","4"),
shorts = c("E1","E2","E3","E4"),
names = c("Estrone","Estradiol",

"Estriol","Estetrol"),
formulas = list(c(C=18, H=22, O=2),

c(C=18, H=24, O=2),
c(C=18, H=24, O=3),
c(C=18, H=24, O=4)))

digest 9

digest Digests a sequence and returns

Description

Digests a sequence and returns

Usage

digest(sequence, enzyme = "trypsin", missed = 0)

Arguments

sequence character vector representing the amino acid sequence to be digested. Note: the
letters in sequence will be changed to upper case.

enzyme character string specifying the enzyme to be used for the digestion. Default is
’trypsin’. Other options are ’trypsin.strict’, ’pepsin’, ’chymotrypsin’ and ’chy-
motrypsin.strict’

missed integer vector: the maximum number of allowed missed cleavages

Value

data.frame with the columns ’peptide’, ’start’, ’stop’ and ’mc’ (missed cleavages)

Note

This function is an modified version of the Digest function found in the package ’OrgMassSpecR’

electronFormula generates a pre-defined formula for electron

Description

generates a pre-defined formula for electron

Usage

electronFormula()

Value

a named numeric vector (formula)

Note

this is used for calculations

10 elements

Examples

print(electronFormula())

elements R6 Class representing a set of elements

Description

Every element inside the object has a name, letter and a mass. The first 2 can be any length of
string, mass should be a numeric

Details

Note: this class is meant to be used for elements.

Warning: all elements inside this object should be unique (names & shorts, not mass)

Active bindings

number retrieve the number of elements present in the object, read only

names to access the names of the elements in the object

shorts to access the shorts of the elements in the object

mass to access the masses of the elements in the object

table retrieves all info on the elements in data.frame format, read only

Methods

Public methods:

• elements$new()

• elements$addElement()

• elements$print()

• elements$getMass()

• elements$clone()

Method new(): creates a new elements object

Usage:
elements$new(shorts, names, mass)

Arguments:

shorts character vector specifying the short names for the elements, eg Hg for Mercury
names character vector specifying the names of the elements
mass numeric vector specifying the masses of the elements

Returns: a new ’elements’ object

elements 11

Method addElement(): adds one or more elements to the object. Elements to be added must
have unique names and shorts.

Usage:
elements$addElement(shorts, names, mass)

Arguments:

shorts character vector specifying the short names for the elements, eg Hg for Mercury
names character vector specifying the names of the elements
mass numeric vector specifying the masses of the elements

Returns: nothing

Method print(): For printing purposes: prints a table of the chemicals with columns letter,
name & short

Usage:
elements$print(...)

Arguments:

... no arguments, the function takes care of printing

Method getMass(): Retrieves the mass of one of the elements in the object

Usage:
elements$getMass(which1)

Arguments:

which1 specifies which element should be retrieved. Which number (row number in the chem-
icals table), name or short as a character vector. The way this is set up, it doesn’t matter
whether capital or non-capital letters are used, since all are converted to upper case before
comparing with what’s in the elements table

Returns: a numeric value

Method clone(): The objects of this class are cloneable with this method.

Usage:
elements$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

randomElements <- elements$new(shorts = c("X1","X2","X3"),
names = c("Secret Element 1",

"Secret Element 2",
"Secret Element 1"),

mass = c(301, 312, 323))

12 elementsInFormula

elementsAverage generates a pre-defined object which contains info on elements, mass
values are average masses (weighted mean mass of elements based on
their natural occurence)

Description

generates a pre-defined object which contains info on elements, mass values are average masses
(weighted mean mass of elements based on their natural occurence)

Usage

elementsAverage()

Value

an elements object

Note

electron is not really meant to be used in formulas, but is needed to calculate mass & m/z of ions

Examples

print(elementsAverage())

elementsInFormula elementsInFormula

Description

retrieves the names of the elements in a formula

Usage

elementsInFormula(formula, removeZero = FALSE)

Arguments

formula named numeric vector, example c(O = 2, C = 1)

removeZero logical flag on how to deal with elements which are zero

Value

character vector

elementsInFormulas 13

Examples

glucose = c(C=6, H=12, O=6, S=0)
elementsInFormula(glucose)
elementsInFormula(glucose, removeZero = TRUE)

elementsInFormulas Combine elements present in 2 separate formulas

Description

especially important when formula1 contains elements that formula2 does not contain and vice
versa, Note: also sorts the result

Usage

elementsInFormulas(formula1, formula2, decrease = FALSE)

Arguments

formula1 named numeric vector, example c(O = 2, C = 1)

formula2 named numeric vector, example c(H = 2, S = 1)

decrease logical flag on how to sort, default = FALSE: increasing

Value

a character vector

Examples

elementsInFormulas(c(O = 2, C = 1),
c(H = 2, S = 1))

elementsMonoisotopic generates a pre-defined R6 elements object which contains info on el-
ements, mass values are mono isotopic

Description

generates a pre-defined R6 elements object which contains info on elements, mass values are mono
isotopic

Usage

elementsMonoisotopic()

14 emptyFormula

Value

an elements object

Note

this object is (by default) used in all chemical calculations in this package

electron is not really meant to be used in formulas, but is needed to calculate mass & m/z of ions

Examples

print(elementsMonoisotopic())

emptyFormula generates an empty pre-defined formula

Description

generates an empty pre-defined formula

Usage

emptyFormula()

Value

a named numeric vector (formula)

Note

this can be used for calculations and setup of unknowns

Examples

print(emptyFormula())

formulaString 15

formulaString Translates regular formula format into a character vector, eg
C6H12O6

Description

Translates regular formula format into a character vector, eg C6H12O6

Usage

formulaString(formula, removeSingle = FALSE, useMarkdown = FALSE)

Arguments

formula named numeric vector, example c(O = 2, C = 1)

removeSingle if TRUE then for elements that are present in the formula only a single time, the
number (1) will not be included. Default is FALSE. See also examples

useMarkdown default = FALSE. If TRUE, the it will use HTML/Markdown codes <sub> in the
formulas, which can be used with the library ’gt’ to generate ’proper’ notation
for chemical formulas (numbers in subscript)

Value

character vector

Examples

formulaString(c(C=6, H=12, O=6))
formulaString(c(H=3,O=4,P=1))
formulaString(c(H=3,O=4,P=1), removeSingle = TRUE)
formulaString(c(H=2, O=1))
formulaString(c(H=2, O=1), removeSingle = TRUE)

formulaToMass calculates the neutral mono-isotopic mass of a formula

Description

calculates the neutral mono-isotopic mass of a formula

16 massToMz

Usage

formulaToMass(
formula = NULL,
removeNA = FALSE,
elementsInfo = elementsMonoisotopic(),
enviPat = FALSE,
exact = TRUE

)

Arguments

formula named numeric vector, example c(O = 2, C = 1)

removeNA logical vector: what to do if any of the elements is NA. If TRUE, then remove
before calculation, if FALSE, then do not remove

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic(). The elementsAverage() function does not produce 100 complex isotope
patterns that emerge. In case average masses are needed it’s better to use the
enviPat option

enviPat logical argument that determines if the enviPat based calculations should be
used. Default is FALSE. For monoisotopoc masses there is no difference, but
for average masses of larger molecules (with complicated isotope patterns) it’s
highly recommended to use enviPat = TRUE with exact = FALSE

exact determines if the exact (TRUE, default) or the average (FALSE) mass is calcu-
lated (ignored if enviPat is FALSE)#’

Value

numeric vector

Examples

formulaToMass(c(H=2, O=1))
formulaToMass(c(H=2, O=1), elementsInfo = elementsAverage())
formulaToMass(c(C = 50, H=102))
formulaToMass(c(C = 50, H=102), elementsInfo = elementsAverage())
formulaToMass(c(C = 50, H=102), enviPat = TRUE)
formulaToMass(c(C = 50, H=102), enviPat = TRUE, exact = FALSE)

massToMz Calculates the m/z value of a charged/adducted ion

Description

Calculates the m/z value of a charged/adducted ion

massToMz 17

Usage

massToMz(
mass,
adducts = 0,
adductFormula = electronFormula(),
adductCharge = -1,
elementsInfo = elementsMonoisotopic()

)

Arguments

mass numeric vector, (neutral) mass of the molecule

adducts numeric vector, number of adducts ’attached to’ or ’removed from’ the (origi-
nally neutral) molecule

adductFormula formula (named numeric vector) of the adduct

adductCharge numeric vector indicating the actual charge per adduct

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Value

numeric vector

Examples

amino acid residue lysine + water
lysineMass <- formulaToMass(aminoAcidResidues()$getFormula("K") %f+% waterFormula())
lysineMass
M+H+ : adducts = 1, adductFormula = protonFormula(), adductCharge = 1
singly charged/protonated ion (ESI)
massToMz(lysineMass,

adducts = 1,
adductFormula = protonFormula(),
adductCharge = 1)

Doubly charged/protonated ion (ESI)
massToMz(lysineMass,

adducts = 2,
adductFormula = protonFormula(),
adductCharge = 1)

M-H- : single, negatively charged
massToMz(lysineMass,

adducts = -1,
adductFormula = protonFormula(),
adductCharge = 1)

M+ : singly positively charged (molecular) ion (EI)
massToMz(lysineMass,

adducts = -1,
adductFormula = electronFormula(),
adductCharge = 1)

18 massToMzH

M- : singly negatively charged (molecular) ion (EI)
massToMz(lysineMass,

adducts = 1,
adductFormula = electronFormula(),
adductCharge = 1)

massToMzH Calculates the m/z value of a protonated ion (positive ESI)

Description

a wrapper around massToMz for positively charged, protonated ions in ESI

Usage

massToMzH(mass, charge = 1, elementsInfo = elementsMonoisotopic())

Arguments

mass numeric vector, (neutral) mass of the molecule

charge charge state

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Value

numeric vector

Examples

amino acid residue lysine + water
lysineMass <- formulaToMass(aminoAcidResidues()$getFormula("K") %f+% waterFormula())
lysineMass
M+H+ : adducts = 1, adductFormula = protonFormula(), adductCharge = 1
singly charged/protonated ion (ESI)
massToMz(lysineMass,

adducts = 1,
adductFormula = protonFormula(),
adductCharge = 1)

massToMzH(lysineMass)

modifications 19

modifications R6 Class representing a set of modifications for the aminoacids in pep-
tides

Description

Every modification inside the object has a name, position, fixed (flag), gain (formula), loss (formula)
and category.

’name’ is a character vector.

Position is a character vector specifying the amino acids which always have the modification (fixed
= TRUE) or can have the modification (fixed = FALSE). More than one amino acid can be specified,
eg NQ (for Asparagine & glutamine). Please note that currently the package does NOT support ’ex-
otic’ amino acids (eg Selenocysteine) or ’combination’ letters, such as ’J’ (Leucine or Isoleucine).
For the C- and N-terminus, use ’C_Term’ or ’N_Term’ for position.

Gain and loss specify what is lost and/or gained when a amino acid is modified. For example
Carbamidomethylation of Cysteine has both a loss formula c(H=1) and a gain formula c(C=2, H=4,
N=1, O=1); obviously this could also be defined as: loss formula = emptyFormula(), gain formula
= c(C=2, H=3, N=1, O=1).

For the category field (character vector) there is no real ’rule’ on how to classify modifications. I
usually stick to the categorisation of Mascot or Sequest.

Active bindings

number retrieve the number of modifications present in the object, read only

fixed retrieve a table of the fixed modifications in the modification table, read only

variable retrieve a table of the variable modifications in the modification table, read only

table to access the table of modifications directly

Methods

Public methods:
• modifications$new()

• modifications$print()

• modifications$add()

• modifications$addTable()

• modifications$clone()

Method new(): Create a new modifications object

Usage:
modifications$new(data = NA)

Arguments:

data default = NA. If not NA, then should be a tibble with 6 columns: name, position, fixed,
gain, loss and category. This is checked, but the contents of each column are not checked.

20 modifications

Method print(): For printing purposes: prints a table of the modifications

Usage:
modifications$print(...)

Arguments:

... no arguments, the function takes care of printing

Method add(): Adds a single modification

Usage:
modifications$add(name, position, fixed, gain, loss, category)

Arguments:

name character vector
position character vector, should be a valid amino acid residue
fixed logical vector, specifies whether the modification is fixed (TRUE) or dynamic (FALSE)
gain named numeric vector (formula) that specifies what (atoms) are gained when a modifica-

tion is applied to an amino acid
loss named numeric vector (formula) that specifies what (atoms) are lost when a modification

is applied to an amino acid
category character vector. Not rigidly defined: for user to be able to select/filter etc which

type of modifications to use

Returns: nothing

Method addTable(): Add (a set of) modifications via a tibble

Usage:
modifications$addTable(data = NA)

Arguments:

data default = NA. If not NA, then should be a tibble with 6 columns: name, position, fixed,
gain, loss and category. This is checked, but the contents of each column are not checked.

Returns: nothing

Method clone(): The objects of this class are cloneable with this method.

Usage:
modifications$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

the logical vector fixed is very important. If TRUE, then a modification is considered to be always
present, if FALSE then its presence is optional.

mzHToMass 21

Examples

aaModifications <- modifications$new()
aaModifications$addTable(

tibble::tibble(
name = c("Carbamidomethyl (C)",

"Carboxymethyl (C)",
"Oxidation (M)"),

position = c("C","C","M"),
fixed = c(TRUE,TRUE,FALSE),
gain = list(c(C = 2, H = 4, N = 1, O = 1),

c(C = 2, H = 3, N = 0, O = 2),
c(C = 0, H = 0, N = 0, O = 1)),

loss = list(c(protonFormula()),
c(protonFormula()),
c(emptyFormula())),

category = c("Cys-state","Cys-state","Preparation Artefact")
)

)
aaModifications
aaModifications$add(name = "Deamidation",

position = "NQ",
fixed = FALSE,
gain = c(O = 1, H = 1),
loss = c(N = 1, H =2),
category = "Preparation Artefact")

aaModifications

mzHToMass calculates the mass of the molecule in an ion (M+xH)x+

Description

a wrapper around mzToMass for positively charged, protonated ions in ESI

Usage

mzHToMass(mz, charge = 1, elementsInfo = elementsMonoisotopic())

Arguments

mz numeric vector, mass to charge ratio of he ion

charge charge state

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Value

nuemric vector

22 mzToMass

Examples

massToMzH(mass = 174.1117, charge = 2) |> mzHToMass(charge = 2)
massToMzH(mass = 174.1117, charge = 1) |> mzHToMass(charge = 1)

mzToMass calculates the mass of the molecule in an ion

Description

essentially the reverse of the massToMz

Usage

mzToMass(
mz,
adducts = 0,
adductFormula = electronFormula(),
adductCharge = -1,
elementsInfo = elementsMonoisotopic()

)

Arguments

mz mass to charge ratio of the ion

adducts numeric vector, number of adducts ’attached to’ or ’removed from’ the (origi-
nally neutral) molecule

adductFormula formula (named numeric vector) of the adduct

adductCharge numeric vector indicating the actual charge per adduct

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Value

numeric vector

Examples

massToMz(mass = 174.1117, adductFormula = c(e=1), adducts = 2, adductCharge = -1) |>
mzToMass(adductFormula = c(e=1), adducts = 2, adductCharge = -1)

massToMz(mass = 174.1117, adductFormula = c(H=1), adducts = 1, adductCharge = 1) |>
mzToMass(adductFormula = c(H=1), adducts = 1, adductCharge = 1)

pdToFormula 23

pdToFormula translates a proteome Discoverer (Thermo Scientific) elements for-
mula string to a formula as used by this package

Description

translates a proteome Discoverer (Thermo Scientific) elements formula string to a formula as used
by this package

Usage

pdToFormula(pdFormula)

Arguments

pdFormula a character vector. Formula in a format as used by proteome discoverer software

Value

formula of format c(H=2, O=1)

Examples

glucose <- pdToFormula("C(6) H(12) O(6)")
glucose
water <- pdToFormula("H(2) O")
water

peptide R6 Class representing a (single) peptide

Description

Contains two character vectors: one representing the amino acid sequence, and a second conatining
info on the positions of ’variable’ modifications. The object also contains a modification table
specifying the ’fixed’ amd ’variable’ modifications.

Active bindings

sequence returns the amino acid sequence as a character vector, can be set but is not checked
against the length of the modifications string

length returns the length of the peptide (read only)

modifications returns the moficiations string, can be set but is not checked agains the length of
the sequence string

modificationsTable returns the mofication table, can be modified. Note: ’variable’ modifications
should match the modifications string

24 peptide

Methods

Public methods:
• peptide$new()

• peptide$print()

• peptide$sequence.part()

• peptide$modifications.part()

• peptide$modifications.formula.part()

• peptide$modifications.formula()

• peptide$formula.part()

• peptide$formula()

• peptide$mass.part()

• peptide$mass()

• peptide$mz.part()

• peptide$mz()

• peptide$mzH.part()

• peptide$mzH()

• peptide$fragments.part()

• peptide$fragments()

• peptide$fragments.part.immoniumIons()

• peptide$fragments.immoniumIons()

• peptide$clone()

Method new(): Create a new peptide object

Usage:
peptide$new(sequence = "", modificationTable = NA, variableModifications = NA)

Arguments:

sequence character vector, the amino acid sequence of the peptide
modificationTable the table from a R6 ’modifications’ object containing the variable and

fixed modifications present in the amino acid sequence
variableModifications character vector specifying the position of variable modifications.

The length of this vector must be the same length as the sequence. Each character specifies
the modification at that position, eg "00010", means that position 1,2,3 & 5 are unmodified,
while position 4 has the third variable modification in the the modification table. Note that
the numbering follows the original row order of the modification table (fixed modifications
filtered out). Additions to a modification table should not be a problem, deletions or editing
can cause problems however as the object currently cannot deal with this itself. If this
character vector is NA, then a character vector of "0"’s will be created (with the same length
as the sequence)

Returns: a new ’peptide’ object

Method print(): For printing purposes: prints the sequence string, the variable modifications
string and the modification table

Usage:

peptide 25

peptide$print(...)

Arguments:
... no arguments, the function takes care of printing

Method sequence.part(): Retrieve part of the amino acid squence. Note: intended for internal
use

Usage:
peptide$sequence.part(startSeq = 1L, endSeq = 1L)

Arguments:
startSeq integer vector, specifies the start of the part of the amino acid sequence to retrieve
endSeq integer vector, specifies the end of the part of the amino acid sequence to retrieve

Returns: character vector

Method modifications.part(): Retrieve part of the variable modification string. Note: in-
tended for internal use

Usage:
peptide$modifications.part(startSeq = 1L, endSeq = 1L)

Arguments:
startSeq integer vector, specifies the start of the part of the variable modification string to

retrieve
endSeq integer vector, specifies the end of the part of the variable modification string to retrieve

Returns: character vector

Method modifications.formula.part(): Determines the gain & loss formulas for a part of
the peptide (waviable modification string and modification table are used for this): adds up all the
losses and gains. If the position of a variable modification in the variable modification string does
not match the amino acid in the modification table, then a warning is produced

Usage:
peptide$modifications.formula.part(
startSeq = 1L,
endSeq = 1L,
Nterminal = TRUE,
Cterminal = TRUE

)

Arguments:
startSeq integer vector, specifies the start of the part of the variable modification string to

retrieve
endSeq integer vector, specifies the end of the part of the variable modification string to retrieve
Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is

present in the part selected by startSeq and endSeq)
Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is

present in the part selected by startSeq and endSeq)

Returns: a list of 2 formulas: the summed up gain formulas & the summed up loss formulas
which are present in the part selected by startSeq and endSeq)

26 peptide

Method modifications.formula(): Deterines the gain & loss formulas for the full length of
the peptide sequence. Essentially a wrapper for modifications.formula.part

Usage:
peptide$modifications.formula(Nterminal = TRUE, Cterminal = TRUE)

Arguments:

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Returns: a list of 2 formulas: the summed up gain formulas & the summed up loss formulas
which are present in the part selected by startSeq and endSeq)

Method formula.part(): Determines the chemical formula of part of the peptide with or
without the modifications.

Usage:
peptide$formula.part(
startSeq = 1,
endSeq = 1,
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE

)

Arguments:

startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Returns: a named numeric vector, eg: c(C=6, H=12, O=6)

Method formula(): Determines the chemical formula of the full length peptide with or without
modifications. Essentially a wrapper around ’formula.part’

Usage:
peptide$formula(
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE

)

Arguments:

peptide 27

ignoreModifications if FALSE then modifications (both fixed & variable) are taken into
account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Returns: a named numeric vector, eg: c(C=6, H=12, O=6)

Method mass.part(): Calculate the mass of part of the peptide with or without modifications

Usage:
peptide$mass.part(
startSeq = 1,
endSeq = 1,
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE,
elementsInfo = elementsMonoisotopic()

)

Arguments:
startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Returns: numeric vector

Method mass(): Calculate the mass of the full length peptide with or without modifications

Usage:
peptide$mass(
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE,
elementsInfo = elementsMonoisotopic()

)

Arguments:
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

28 peptide

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Returns: numeric vector

Method mz.part(): Calculate the m/z of part of the peptide (as an ion) with or without modifi-
cations

Usage:
peptide$mz.part(
startSeq = 1,
endSeq = 1,
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE,
elementsInfo = elementsMonoisotopic(),
adducts = 1,
adductFormula = protonFormula(),
adductCharge = 1

)

Arguments:

startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

adducts numeric vector, number of adducts attached to’ or ’removed from’ the (originally
neutral) peptide

adductFormula formula (named numeric vector) of the adduct
adductCharge numeric vector indicating the actual charge per adduct

Returns: numeric vector

Method mz(): Calculate the m/z of the full length peptide (as an ion) with or without modifica-
tions

Usage:
peptide$mz(
ignoreModifications = FALSE,

peptide 29

Nterminal = TRUE,
Cterminal = TRUE,
elementsInfo = elementsMonoisotopic(),
adducts = 1,
adductFormula = protonFormula(),
adductCharge = 1

)

Arguments:

ignoreModifications if FALSE then modifications (both fixed & variable) are taken into
account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

adducts numeric vector, number of adducts attached to’ or ’removed from’ the (originally
neutral) peptide

adductFormula formula (named numeric vector) of the adduct
adductCharge numeric vector indicating the actual charge per adduct

Returns: numeric vector

Method mzH.part(): Calculate the m/z of part of the peptide (as a protonated ion) with or
without modifications

Usage:
peptide$mzH.part(
startSeq = 1,
endSeq = 1,
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE,
charge = 1,
elementsInfo = elementsMonoisotopic()

)

Arguments:

startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

30 peptide

charge charge state
elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-

topic()

Returns: numeric vector

Method mzH(): Calculate the m/z of part of the peptide (as a protonated ion) with or without
modifications

Usage:
peptide$mzH(
charge = 1,
ignoreModifications = FALSE,
Nterminal = TRUE,
Cterminal = TRUE,
elementsInfo = elementsMonoisotopic()

)

Arguments:

charge charge state
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide. Note: if TRUE then the
’Nterminal’ and ’Cterminal’ parameters are ignored

Nterminal logical vector if TRUE then Nterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

Cterminal logical vector if TRUE then Cterminal modifications are included (if N-terminus is
present in the part selected by startSeq and endSeq)

elementsInfo elements masses to be used, needs to be of class elements, default is elementsMonoiso-
topic()

Returns: numeric vector

Method fragments.part(): generates a table of fragments which could arise from fragmenting
part of the peptide. The ionseries generated are: a, a-H2O, a-NH3, b, b-H2O, b-NH3, b+H2O, c,
x, y, y-H2O, y-NH3, z. Please note that the calculation is relatively ’dumb’: it does NOT check
whether a fragment is possible at all. Prime example is the B+H2O ion series: these fragment
ions can only if certain conditions are met. Currently there is no check in this function that checks
these conditions/assumptions

Usage:
peptide$fragments.part(
startSeq = 1,
endSeq = 1,
ignoreModifications = FALSE,
onlyIons = TRUE,
chargeState = 1,
returnFormulas = FALSE,
formulaIncludeChargeProtons = FALSE

)

Arguments:

peptide 31

startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide
onlyIons default = TRUE, only information on the 13 (earlier mentioned) ion series is gener-

ated. If FALSE then an additional 10 columns are generated with info on the ionseries
chargeState charge state of the ions in the generated table
returnFormulas default = FALSE, if TRUE then in stead of numerical values the table will be

populated by the chemical formulas of the neutral fragments or charged fragment ions
formulaIncludeChargeProtons default = FALSE, if TRUE then protons will be included in

the formulas (ignored when ’ returnFormulas = FALSE)

Returns: a data.frame with fragment information

Method fragments(): generates a table of fragments which could arise from fragmenting the
full sequence of the peptide. The ion series generated are: a, a-H2O, a-NH3, b, b-H2O, b-NH3,
b+H2O, c, x, y, y-H2O, y-NH3, z. Please note that the calculation is relatively ’dumb’: it does
NOT check whether a fragment is possible at all. Prime example is the B+H2O ion series: these
fragment ions can only if certain conditions are met. Currently there is no check in this function
that checks these conditions/assumptions

Usage:
peptide$fragments(
ignoreModifications = FALSE,
onlyIons = TRUE,
chargeState = 1,
returnFormulas = FALSE,
formulaIncludeChargeProtons = FALSE

)

Arguments:
ignoreModifications if FALSE then modifications (both fixed & variable) are taken into

account when calculating the chemical formula of the peptide
onlyIons default = TRUE, only information on the 13 (earlier mentioned) ion series is gener-

ated. If FALSE then an additional 10 columns are generated with info on the ionseries
chargeState charge state of the ions in the generated table
returnFormulas default = FALSE, if TRUE then in stead of numerical values the table will be

populated by the chemical formulas of the neutral fragments or charged fragment ions
formulaIncludeChargeProtons default = FALSE, if TRUE then protons will be included in

the formulas (ignored when ’ returnFormulas = FALSE)

Returns: a data.frame with fragment information

Method fragments.part.immoniumIons(): generates a numeric vector containing ’expected’
immonium ions based on the amino acid content of part of the peptide. Please note that this
function does NOT take into account possible (fixed or variable) modifications

Usage:
peptide$fragments.part.immoniumIons(startSeq = 1, endSeq = 1)

Arguments:

32 peptideCount

startSeq integer vector, specifies the start of the part of the peptide sequence
endSeq integer vector, specifies the end of the part of the peptide sequence

Returns: numeric vector

Method fragments.immoniumIons(): generates a numeric vector containing ’expected’ im-
monium ions based on the amino acid content of the full sequence of the peptide. Please note that
this function does NOT take into account possible (fixed or variable) modifications

Usage:
peptide$fragments.immoniumIons()

Returns: numeric vector

Method clone(): The objects of this class are cloneable with this method.

Usage:
peptide$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

testPeptide <- peptide$new(sequence = "SAMPLER",
modificationTable = aminoAcidModifications()$table,
variableModifications = "0010000")

testPeptide
testPeptide$formula()

peptideCount counts the occurence of a amino acid (sequence) in another amino
acid sequence

Description

counts the occurence of a amino acid (sequence) in another amino acid sequence

Usage

peptideCount(
thePeptide = NA,
searchPeptide = NA,
doNotSplice = TRUE,
upper = TRUE

)

peptideFormula 33

Arguments

thePeptide character vector, the peptide to be searched

searchPeptide character vector, the amino acid sequence to search for

doNotSplice if FALSE the all characters in the searchPeptide are searched individually.If
TRUE then the searchPeptide is searched as a whole. Default = TRUE

upper convert both thePeptide & searchPeptides to uppercase before searching

Value

numeric vector

Examples

peptideCount("SAMPLER", "P")
peptideCount("SAMPLER", "PLER", doNotSplice = TRUE)
peptideCount("SAMPLER", "PLER", doNotSplice = FALSE)

peptideFormula peptideFormula

Description

gives formula of a peptide string

Usage

peptideFormula(peptide, aminoAcids = aminoAcidResidues())

Arguments

peptide character vector specifying the sequence of amino acids in a peptide

aminoAcids R6 object of type ’chemicals’ with the amino acid info, default = aminoAcidResidues()

Value

a numeric vector

Note

does not check for non-amino acid letters, modifications cannot be specified

Examples

peptideFormula("SAMPLER")

34 peptideMzH

peptideFragments Generates a pre-defined (incomplete) table of names of fragments for
the ions resulting when fragmenting a peptide in MS

Description

Generates a pre-defined (incomplete) table of names of fragments for the ions resulting when frag-
menting a peptide in MS

Usage

peptideFragments()

Value

a data.frame of two columns: ’name’ and ’series name’ of fragments

Note

will possibly be removed in the future

peptideMzH peptideMzH

Description

gives ion m/z of the protonated peptide

Usage

peptideMzH(
peptide,
charge = 1,
aminoAcids = aminoAcidResidues(),
elementsInfo = elementsMonoisotopic()

)

Arguments

peptide character vector specifying the sequence of amino acids in a peptide

charge numeric vector specifying the charge of the peptide ion

aminoAcids R6 object of type ’chemicals’ with the amino acid info, default = aminoAcidResidues()

elementsInfo R6 object of type ’elements’ with the elements masses info, default = elementsMonoiso-
topic()

protonFormula 35

Value

a numeric vector

Note

does not check for non-amino acid letters, modifications cannot be specified

Examples

peptideMzH("SAMPLER")
peptideMzH("SAMPLER", charge = 2)
peptideMzH("SAMPLER", elementsInfo = elementsAverage())

protonFormula generates a pre-defined formula for proton

Description

generates a pre-defined formula for proton

Usage

protonFormula()

Value

a named numeric vector (formula)

Examples

print(protonFormula())

rcdkFormula translates an cdkFormula object to a ’regular’ formula format

Description

translates an cdkFormula object to a ’regular’ formula format

Usage

rcdkFormula(cdkformula)

Arguments

cdkformula an object of type rcdkFormula

36 removeZeros

Value

formula of format c(H=2, O=1)

Note

This function does not deal with the charge state which is possibly defined in the rcdkFormula
object

Examples

glucose <- rcdk::get.formula("C6H12O6")
rcdkFormula(glucose)
glucoseAdductIon <- rcdk::get.formula("C6H12O6Na1", charge = 1)
glucoseAdductIon
to get to the same m/z value
glucoseAdductIon |> massSpectrometryR::rcdkFormula() |> formulaToMass() |> massToMz(adducts = -1)

removeZeros removeZeros

Description

removes elements that have number zero

Usage

removeZeros(formula)

Arguments

formula named numeric vector, example c(O = 2, C = 1)

Value

named numeric vector (formula)

Examples

glucose = c(O=6, H=12, C=6)
glucose %f+% emptyFormula()
removeZeros(glucose %f+% emptyFormula())

sortFormula 37

sortFormula sortFormula

Description

sorts the elements of a formula in alphabetical order (increasing/decreasing)

Usage

sortFormula(formula, decrease = FALSE)

Arguments

formula named numeric vector, example c(O = 2, C = 1)

decrease logical flag on how to sort, default = FALSE: increasing

Value

named numeric vector (formula)

Examples

glucose = c(O=6, H=12, C=6)
glucose
sortFormula(glucose)

stringFormula Translates a character vector formula, eg ’C6H12O6’ to a regular
formula c(C=6, H=12, O=6)

Description

Translates a character vector formula, eg ’C6H12O6’ to a regular formula c(C=6, H=12, O=6)

Usage

stringFormula(string)

Arguments

string character vector, format eg: ’C6H12O6’

Value

formula of format c(H=2, O=1)

38 stringToFormula

Note

it’s imperative that every element has a number (count), otherwise this function is highly likely to
malfunction and return NA

Examples

stringFormula("H3O4P1")
stringFormula("C6H12O6")

stringToFormula Translates a character vector formula, eg ’C6H12O6’ to a regular
formula c(C=6, H=12, O=6)

Description

Translates a character vector formula, eg ’C6H12O6’ to a regular formula c(C=6, H=12, O=6)

Usage

stringToFormula(string)

Arguments

string character vector, format eg: ’C6H12O6’

Value

formula of format c(H=2, O=1)

Note

this function is an improved version of stringFormula(). Now every elements with count 1 can have
the number omitted. However, the function depends on ’correct’ elements (first letter is uppercase,
second letter is lowercase). This function also allows for the presence of isotopes, eg ’[13]C’ or
’[2]H2O’

Examples

stringToFormula("H3O4P1")
stringToFormula("C6H12O6")
stringToFormula("C6H5Br")
stringToFormula("[13]C6H12O5[18]O")

subtractFormulas 39

subtractFormulas subtracting one formula from another, taking into account possible
differing elements

Description

subtracting one formula from another, taking into account possible differing elements

Usage

subtractFormulas(formula1, formula2)

Arguments

formula1 named numeric vector, example c(O = 2, C = 1); formula to be subtracted from

formula2 named numeric vector, example c(H = 2, S = 1); formula to subtract

Value

a named numeric vector (formula)

Note

There are no checks for negative values!

Examples

subtractFormulas(c(H = 2, O = 1), c(H = 1))
subtractFormulas(c(H = 2, O = 1), c(S = 1, O = 2))

validFormula checks if formula is valid

Description

checks if formula is valid

Usage

validFormula(formula, string = FALSE)

Arguments

formula character vector or named numeric vector, representing the formula to be checked

string logical vector specifying if the formula is a character vector or not

40 %f-%

Value

logical vector

Note

This is done via the check_chemform function from the package enviPat

Examples

glucose <- c(C=6, H=12, O=6)
validFormula(glucose)
formulaString(glucose)
validFormula(formulaString(glucose), string = TRUE)

waterFormula generates a pre-defined formula for water

Description

generates a pre-defined formula for water

Usage

waterFormula()

Value

a named numeric vector (formula)

Examples

print(waterFormula())

%f-% custom operator for subtracting formulas from one another, to make
calculating with formulas a little more clear

Description

custom operator for subtracting formulas from one another, to make calculating with formulas a
little more clear

Usage

formula1 %f-% formula2

%f+% 41

Arguments

formula1 named numeric vector, example c(O = 2, C = 1); formula to be subtracted from

formula2 named numeric vector, example c(H = 2, S = 1); formula to subtract

Examples

c(H = 2, O = 1) %f-% c(H = 1)
c(H = 2, O = 1) %f-% c(S = 1, O = 2)

%f+% custom operator for adding up formulas, to make calculating with for-
mulas a little more clear

Description

custom operator for adding up formulas, to make calculating with formulas a little more clear

Usage

formula1 %f+% formula2

Arguments

formula1 named numeric vector, example c(O = 2, C = 1)

formula2 named numeric vector, example c(H = 2, S = 1)

Examples

waterFormula() %f+% protonFormula()
waterFormula() %f+% c(C=1, O = 2)
c(H = 2, O = 1) %f+% c(S = 1, O = 2)

Index

%f+%, 41
%f-%, 40

addFormulas, 2
addListFormulas, 3
aminoAcidClass, 4
aminoAcidModifications, 5
aminoAcidResidues, 6

chemicals, 7

digest, 9

electronFormula, 9
elements, 10
elementsAverage, 12
elementsInFormula, 12
elementsInFormulas, 13
elementsMonoisotopic, 13
emptyFormula, 14

formulaString, 15
formulaToMass, 15

massSpectrometryR::chemicals, 4
massToMz, 16, 18, 22
massToMzH, 18
modifications, 19
mzHToMass, 21
mzToMass, 21, 22

pdToFormula, 23
peptide, 23
peptideCount, 32
peptideFormula, 33
peptideFragments, 34
peptideMzH, 34
protonFormula, 35

rcdkFormula, 35
removeZeros, 36

sortFormula, 37
stringFormula, 37
stringToFormula, 38
subtractFormulas, 39

validFormula, 39

waterFormula, 40

42

	addFormulas
	addListFormulas
	aminoAcidClass
	aminoAcidModifications
	aminoAcidResidues
	chemicals
	digest
	electronFormula
	elements
	elementsAverage
	elementsInFormula
	elementsInFormulas
	elementsMonoisotopic
	emptyFormula
	formulaString
	formulaToMass
	massToMz
	massToMzH
	modifications
	mzHToMass
	mzToMass
	pdToFormula
	peptide
	peptideCount
	peptideFormula
	peptideFragments
	peptideMzH
	protonFormula
	rcdkFormula
	removeZeros
	sortFormula
	stringFormula
	stringToFormula
	subtractFormulas
	validFormula
	waterFormula
	f-
	f+
	Index

